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Summary. The standard method of Pitzer for predicting the solubility isotherms of systems in which 
solid phases with a constant composition crystallize is applied to cases when mixed crystals are formed. 
The four-component carnallite type systems RbC1-CsCI-MgC12-H20, RbCI-KC1-MgC12 H20, 
and RbC1-RbBr-MgC12 MgBr2-H20 and the corresponding subsystems are thermodynamically 
simulated at 25 °C. It is established that the solubility diagrams consist of crystallization regions of 
the simple salts MX, M'X', MgX 2. 6H20, and MgX' 2.6H20 and of the corresponding carnallite type 
double salts with the composition 1 : 1:6. A method of calculation of the integral Gibbs energy of mixing 
GmiX(s) of crystals formed in water-salt systems has been proposed. The results on the systems 
RbCI-KC1-H20 , RbCI-RbBr-H20, and MgC12-MgBr2-H20 are compared with experimental data 
from the literature and with values calculated using various models. 
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Thermodynamische Simulation von Vierkomponentensystemen des Carnallit-Types 

Zusammenfassung. Die Pitzer-Methode zur Voraussage der L6slichkeitsisothermen in Mehrstoff- 
systemen, in welchen feste Phasen mit konstanter Zusammensetzung auskristallisieren, wurde auch 
f/Jr F~ille angewendet, bei denen sich Mischkristalle bilden. Die Vierstoffsysteme RbCI-CsC1-MgC12 
HzO, RbC1-KC1-MgC12-H20 und RbC1-RbBr-MgCI2-MgBre-H20, aus welchen Carnallit-Typ- 
Mischkristalle auskristallisieren, und die dazugeh6rigen Dreistoff-Randsysteme wurden bei 25 °C 
simuliert. Man stellt lest, dab die L6slichkeitsdiagramme sowohl Kristallisationsbereiche der einfachen 
Salze MX, M'X, MgXg'6H20 und MgX'2'6H20 als auch der entsprechenden carnallitartigen 
Doppelsalze mit der Zuzammensetzung 1:1:6 umfassen. Eine Methode zur Berechnung der 
Gibbs-Energie Gmix(s) f/Jr die in Wasser-Salz-Systemen gebildeten Mischkristalle wird vorgeschlagen. 
Die fiir die Systeme RbC1-KC1-H20, RbC1-RbBr-H20 und MgC12 MgBr 2 H20 erhaltenen 
Ergebnisse werden mit experimentellen Literaturdaten und Resultaten yon Berechnungen aufgrund 
verschiedener Modelle verglichen. 

Introduction 

In  the l i te ra ture  there is a relat ively small  n u m b e r  of  da t a  on  f o u r - c o m p o n e n t  
sys tems  of  the type  M ÷, M '÷ ,  M g  2÷/C1 / / H 2 0  and  M ÷, M g  2 ÷ / C I - ,  Br / / H 2 0 ,  
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where M +, M '+ = K  +, NH~-, Rb +, and Cs +. The KC1-NH4C1-MgC12-H20 
system has been investigated at 25 °C [1]. It has been established that a discontinu- 
ous series of mixed crystals based on ammonium and potassium carnallities is 
formed. D'Ans and Bush [2] have established the formation of limited solid solutions 
between potassium and rubidium carnallites in the four-component system 
KC1-RbC1-MgClz-H20 at 25 °C. These results are confirmed by the experimental 
data of Makarov et al. [3] obtained by investigation of the same system at 100 °C. 
Balarew et al. [4, 51 have studied the cocrystallization ofisostructural carnallite type 
double salts and found that in systems where continuous series of mixed crystals 
are formed, the distribution coefficients D correspond to the theoretical values 
calculated according to the equation of isomorphic cocrystallization [61, where 
M1,0 and M2, o are the molalities of the salts in their binary saturated solutions. 

D2/1 = 1,o 1 

The experimental investigation of the systems carnallite type double salt I-carnallite 
type double salt II-water is difficult because most carnallite type double salts are 
incongruently soluble in water at temperatures up to 75 °C. 

K. Pitzer has suggested a method [7, 8] allowing the calculation of the activity 
coefficients in saturated and unsaturated solutions of electrolytes with an accuracy 
of 2-6~o [9]. Harvie and Weare [101 and Filippov, Dmitriev, and Yakovleva [11] 
were the first to apply the Pitzer model under the conditions of chemical and phase 
equilibrium in order to predict the phase diagrams of multi-component water-salt 
systems in which phases with constant compositions crystallize. The authors have 
used data on the properties of the corresponding subsystems with a smaller number 
of components. 

The purpose of the present work is the thermodynamical simulation of 
four- component carnillite type systems in which mixed crystals are formed by 
means of the Pitzer model. This would allow drawing conclusions on the appli- 
cability of the standard method to the simulation of water-salt systems in cases 
when solid phases with varying compositions crystallize in them. The systems RbCI- 
CsC1-MgC12-H20 , RbC1-KC1-MgCI2-H20, and RbC1-RbBr-MgC12-MgBr 2- 
H20 are investigated at 25 °C. 

Harvie, M¢ller, and Weare [12] and Filippov and Rumjanzev [13] have used the 
Pitzer model for systems where mixed crystals are formed. The authors have 
calculated the Gibbs energy of mixing GmiX(s) by the following equation: 

Gmix(s)/RT = xl  lnal(s) + x2 lna2(s) = xl [lnal(1) - lnal(lo)] + xz[lna2(1) - lna2(lo)l, 

2 

where the indices s, 1 and 1 o concern mixed crystals and saturated ternary and binary 
solutions, respectively [131. In a detailed study we have proved the applicability of 
these equations to the determination of Gmix(s) for a series of systems in which mixed 
crystals of both anhydrous salts and crystalline hydrates are formed [14]. 

K6nigsberger has determined the excess Gibbs energy of the solid phase 
according to equation 3 deduced from the subregular mixing model 

G~(s) = x(1 - x) [G~(s) + GE(s) (1 -- 2x)1, 3 
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where G~(s) and G~(s) are the thermodynamic excess parameters [15]. They are 
obtained from fits to Lippmann diagrams [16], in which the total solubility constant 
ZK is plotted vs. the mole fractions x of the solid phase and activity fractions x,c t 
of the aqueous phase at thermodynamic equilibrium. In Ref. [17], the authors have 
determined the thermodynamic properties from the thermodynamic equilibrium 
conditions for a system with a variable composition of the solid phase (equality of 
the chemical potential in the solid and liquid phases) and the condition concerning 
stoichiometric saturation, dx =0.  K6nigsberger has proposed the method of 
recursive Bayesian estimation which allows the improvement of the thermodynamic 
excess parameters [18]. 

In Refs. [19, 20], the Gmix(s) values for mixed crystals of the type (K, Rb)C1 and 
Rb(C1, Br) are obtained from data on the solubilities of single salts and mixed crystals 
in aqueous solutions and from measurement of the activity coefficients in saturated 
ternary solutions by the isopiestic method. The authors have calculated the Gibbs 
energy of mixing by the following equation: 

Gmix(s) = RT(Xl lnXl + x2 lnx2 + x 1 ln f  1 + x 2 lnf2), 4 

where f l  is the rational activity coefficient in the solid phase. In a detailed study, 
Sangster and Pelton [21] have summarized the data published before 1985 on 70 
binary alkali halide systems. The authors have proposed simplified expressions for 
the dependence of the excess parameters H E, S E, and G z on the solid solution 
compositions given in molar fractions xl. in cases of insufficient data they have 
assumed that the excess entropy S E is equal to zero and G E is independent of 
temperature. 

In the present investigation, we propose a new method of determination of the 
thermodynamic excess parameters of mixed crystals. The results obtained on ternary 
subsystems with isomorphic cocrystallization (RbC1-KC1-H20 , RbC1-RbBr-H20 , 
and MgClz-MgBrz-HzO ) are compared with the experimental data reported in 
the literature and with values calculated on the basis of different mathematical 
models. 

Results and Discussion 

Calculation of Solubilities 

The four-component carnallite type systems were simulated on the basis of the Pitzer 
model using the following approach: 

1. Determination of the binary Pitzer parameters fl~o), /~tl) and C ~°, taking into 
account the interionic interactions between two ions of the same sign, two ions of 
different signs and three ions, respectively 
2. Determination of the ternary Pitzer parameters 0Mn and ~bMN x characterizing 
interactions between two different ions of the same sign and interactions between 
three ions 
3. Calculation of the solubility isotherms of the three-component systems 
4. Calculation of the solubility isotherms of the four-component systems. 

This scheme was used for simulating the systems of the type M X - M g X 2 - H 2 0  , 
where M = Li, K, NH4, Rb and Cs, and X = C1 and Br [22, 23]. The very good 
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agreement between the calculated solubility isotherms and the experimental data 
permitted an application of the results obtained to the simulation of the four- 
component systems whose subsystems were MX-MgXE-HzO. Since the interaction 
between more than three ions is not taken into consideration in the Pitzer model, 
the simulation was performed on the basis of data on binary and ternary subsystems 
a lone .  

All binary parameters such as fllo), fl(1), and C ° needed for the simulation were 
taken from the literature (Table 1). We calculated phase diagrams with parameters 
which were valid up to saturated solutions. 

The ternary parameters 0MN and OMNX for the subsystems MX-MgX2-HeO in 
which phases with constant compositions (simple salts and carnallite type double 
salts) crystallize are also given in the literature. They are calculated from the 
experimental data on the solubility in the ternary systems. The minimum deviation 
of the logarithm of the solubility product lnK° v for each of the crystallization fields 
from its value in the corresponding binary system was the criterion used for the 
choice of parameters. The lnK°p values of the binary systems were calculated on the 
basis of the binary parameters (Table 1) and of the saturated solutions' composition. 
The values used by us are presented in Table 2. The differences between the 
calculated values of the logarithm of the solubility product in this paper and those 
presented in Refs. [-22] and [-23] are due to differences in the data on the solubilities 
used. 

Table 1. Pitzer binary parameters for the M X  HzO and MgX2-HzO (M = K, Rb, Cs; X = C1, Br) 
systems at 25 °C 

System ill0) fill) fiE) C ¢ max m Ref. 

KCI-H20 0.0483 0.2122 0.0000 -0.0008 4.88 [12] 

RbC1-HzO 0.0409 0.1919 0.0000 -0.0007 7.51 [22] 
RbBr-HzO 0.0370 0.1520 0.0000 -0.0007 6.40 1-22] 

CsCI-H20 0.0390 -0.0374 0.0000 -0.0012 11.30 [22] 
MgC12-H20 0.3511 1.6512 0.0000 0.0065 5.76 [22, 23] 
MgBrz-HzO 0.4328 1.7457 0.0000 0.0029 5.37 [22, 23] 

Table 2. Pitzer ternary parameters for M X  MgX 2 HzO, M X  M'X'-H20,  and MgC12-6HzO- 

MgBrz.6HzO-HEO systems at 25 °C 

System 0MN ~'MNX Ref. 

KC1 MgC12-H20 0.00000 -0.02200 [12] 
RbC1-MgC12-H20 - 0.10400 0.00000 [22] 
RbBr-MgBr2-H20 - 0.10400 - 0.01900 [22] 
CsCI-MgCIz-H20 - 0.12600 0.00000 [22] 
RbCI-KC1-H20 - 0.00007 - 0.00001 [33] 
RbCI-CsC1 H20 +0.00025 -0.00060 [33] 
RbCI-RbBr-H20 - 0.00001 - 0.00001 [33] 
MgCI 2.6HzO MgBr2.6H20-H20 + 0.00110 + 0.00020 [33] 
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The experimental results on the systems RbC1-CsC1-H20 [24], RbC1-KC1-H20 
[24, 25], RbC1-RbBr-H20 1-20], and MgClz-MgBrz-H20 [26, 27] at 25°C 
indicate the formation of mixed crystals. As in known, many of the water-salt 
systems in which solid solutions are formed, obey the rule of Zdanovskii [28], i.e. 
isoactivities of water fall on straight lines over the whole concentration region of 
the solutions. Assuming the applicability of the rule of Zdanovskii to the four systems 
under investigation, we have calculated the ternary parameters on the basis of data 
for the binary subsystems only [13, 293. We have found no data on 0MN and tPm~x 
for the considered systems with varying solid phase compositions crystallizing in 
them in the literature. The values found for 0MN and ~MNX (Table 3) are very low, 
and in our calculations we have assumed 0MN = ffMNX = 0. This approach has been 
proposed by Pitzer and Kim [9-] for a series of systems and is also used by 
Kfnigsberger [15]. The solubility isotherms of the ternary carnallite type systems 
are given in Ref. [22]. 

Figure 1 shows the calculated and experimentally obtained solubility isotherms 
of the ternary subsystems in which mixed crystals appear. The solubilities are 
calculated on the basis of the binary and ternary parameters obtained, assuming 
that only simple salt components of the system crystallize in them. This approxi- 
mation is used by Fanghiinel and Emons [30] for predicting the solubility isotherm 
of KC1-MgClz-H20 system at 200°C. In the system RbC1-KC1-H20, RbC1- 
RbBr-H20,  and MgC12-MgBrz-H20, where a continuous series of mixed crystals 
appear, the experimental solubility isotherms are below the calculated. The 
difference between experimentally found and calculated solubilities is obviously 
associated with the Gibbs energy of mixing Gmix(s) of crystals. This problem will be 
discussed in the next section. For the system RbC1-CsC1-H20, in which a discon- 
tinuous series of mixed crystals is formed, the experimental data are in very good 
agreement with the calculated ones. In the literature there are no data on the solid 
phase compositions [24]. The results obtained from the thermodynamic simulation 
of the system show that the composition of the mixed crystals is very close to that 
of the pure salts RbC1 and CsC1, only small amounts of admixture being present. 

Table 3. Calculated logarithm of the solubi- 
lity product (InK°p) values 

salt composition lnK°p 

MgC12"6H20 10.397 
KC1 2.090 
KCI'MgC12"6H20 10.109 
RbC1 3.050 
RbCl" MgC12" 6H20 7.100 
CsC1 3.485 
CsCI" MgC12 "6H20 10.400 
MgBr 2"6HzO 12.120 
RbBr 2.526 
RbBr' MgBr 2"6H20 10.620 
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Fig 1. Solubility isotherms of MX-M'X'-H20 and MgCI2.6H20-MgBr2.6HzO-HzO type systems 
at 25 °C ( ); calculated values: A: • ([24]); B: • ,  • ([24] and [25], respectively); C: • ([20]); D: e,  • 
([26] and [27], respectively) 

The solubility isotherms of the carnallite type four-component systems RbC1- 
CsC1-MgC12-H20, RbC1-KCI-MgClz-H20,  and RbCI-RbBr-MgClz-MgBr z -  
HzO at 25 °C are plotted assuming that no new solid phases crystallizes in them. 
The results obtained are given in Figs. 2 to 4 as horizontal nonaqueous projections 
of the corresponding solubility diagrams, presented as triangular or quadrangular 
prisms. The salt composition of the systems is given in ion-equivalent percentage. 
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Fig. 4. Calculated solubility isotherms of the RbCI-RbBr-MgC12-MgBr = H20 system at 25 °C (in 
ion-equivalent ~)  

The simulation is realized on the basis of data concerning the binary and ternary 
subsystems, the chemical potential for each crystallization region being the same 
over the whole surface of the solubility isotherm. 

The calculated solubility isotherms give information on the thermodynamically 
most favourable position of the surface separating the crystallization regions of the 
simple and double salts. Since it is assumed that the ternary subsystems RbC1-KCI- 
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H 2 0  , RbC1-RbBr-H20, and MgC12-MgBr2-H20 are of a simple eutonic type, 
the surfaces separating the crystallization regions of the simple salts are absent in 
the real solubility diagrams of the systems RbC1-KC1-MgC12-H20 and RbC1- 
RbBr-MgC12-MgBr2-H20. In Ref. [31], the results from the experimental study 
of the systems with the participation of two carnallite type double salts are 
summarized. It is established that a continuous series of mixed crystals appear when 
not only the carnallite type double salts are isostructural, but also the parameters 
of their unit cells are close. A quantitative criterion in this respect is the value of the 
parameter A6 which takes into account the difference between the volumes V 1 and 
V2 of the unit cells of pure salts participating in the formation of mixed crystals 
according to the formula 

A a  - (v2  - v 0  2 5 

v 'v2 

In agreement with the generalization made in Ref. [31], a continuous series of mixed 
crystals should be formed between the isostructural rubidium and cesium chlor- 
carnallites (A6 = 1.2 × 10-3),  whereas isostructural rubidium chlorocarnallite and 
rubidium bromocarnallite should form a discontinuous series of mixed crystals 
(A~ = 8.2 × 10-3).  A discontinuous series of mixed crystals should also be formed 
by isodimorphic potassium and rubidium chlorocarnallites. 

Calculation of Gibbs Energies of Mixed Crystals 

The good agreement between our results [14] on Gmix(s) and GE(s) and those 
available in the literature for all the systems investigated has proved the applicability 
of the method chosen which is based on Pitzer's equations. This has permitted the 
application of equation 2 to the determination of the thermodynamic characteristics 
of Mg(C1, Br)2" 6H20 mixed crystals formed in the system MgC12-MgBrz-H20 at 
25 °C for which we have found no data in the literature. We have used data on the 
solubility given by different authors [26, 27]. The results obtained for GmiX(s) v s .  X 1 
are presented in Fig. 5. The dependence presented has a symmetrical shape and a 
minimum point at x1~0.5. This allows using the regular mixing model and 
generalizing the results by a simplified correlation equation: 

GE(s) = (--  4.28 + 0.16)xlx 2 kJ mol-  1 6 

The mixed crystals show considerable negative deviations from ideal mixed crystals. 
This may be associated with the same type of crystal lattice, the closeness of chemical 
bonds, and the small difference in size of the exchanging ions. On the basis of the 
calculated activities of the components in the solid phase (al(s)) and the experimen- 
tal data on the composition of the mixed crystals (Xl), and after asumming the 
presence of a stoichiometric saturation [17] (X,q = x,c t = x), we have determined the 
rational activity coefficients f l .  In accordance with dependence 4, the activity 
coefficients of the solid solution components are smaller than unity (if GE(s) < 0) 
and, in contrast to the alkali halide systems [14], decrease with the molar fraction 
of the components x 1. 

The theoretical solubility isotherms for the ternary subsystems (Fig. 1) have 
been plotted assuming that only simple salt components of the systems crystallize 
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Fig. 5. Plot of the Gibbs energy of mixing Gmix(s) [kJ' mol-1] 
vs. the mole fraction of MgCI2.6H20 in Mg(C1, Br)z.6H20 
mixed crystals at 25 °C; o, o: calculated values according to 
eqn. 2 from-experimental data of Boeke [26] and Nikolaev et 
al. [2T], respectively; . . . .  : mix Gia (fl = f 2  = 1) 

in them. According to the conditions of chemical and phase equilibrium in solutions 
saturated towards a given salt with the composition elAl.e2A2"c%A3, the value of 
the logarithm of activity of this salt will be a constant equal to the logarithm of 
activity in the saturated binary solution lna(lo), (lna(lo) = lnK°p) 

lna(el, c~2, ~3) = 0~1 lnal + 0~2 lna2 + 0~3 lna3 = lnK°p(°q, °~2, a3) = const, 7 

where a 1, a2, and a 3 are the activities of the components A1, A2, and H20 in the 
saturated solution, and ~1, c~2, and a3 denote the stoichiometric coefficients in the 
salt. The solubility isotherms are calculated as a geometrical site of points satisfying 
condition 7. The eutectic in the ternary systems is a point simultaneously satisfying 
two equations (which describe the solubility isotherms of two solid phases) and 
represent the solution of the system 

lna(el, ~ 2 ,  (X3; m l ,  m2) = lnK°p(~l, ~2, 0~3) = const 

lna(cq, c~2, c~3; ml, m2) = lnK°p(cq, c~ 2, c~3) = const' 8 

i.e. in the eutectic point the activities of the components in the ternary solution 
eut  eut~ a~ , a 2 ) are equal to the activities of the components in the corresponding binary 

solutions: 

aleUt = al( lo);  azeUt = a/(10) 9 

Proceeding from these conditions and using the binary and ternary parameters of 
interionic interaction obtained as well as the values for lnK°p, we have plotted the 
theoretical solubility isotherms and determined the molalities of the solution 
components (ml ut and e u t  m 2 ) at the eutectic point. 

According to the method proposed by M c C o y  and Wal lace  [32] and used by 
Fi l ippov  and R u m j a n z e v  [12], the Gibbs energy of mixing, Gmix(s), is determined by 
the ratio between the component activities in the saturated ternary and binary 
solutions. In agreement with condition 9, the maximum absolute value of GmiX(s) 
will depend on the activities at the eutectic point and the activities (al(1), a2(1)) at the 
solubility isotherm point (ml, m2) corresponding to the eutectic (the "transition" 
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eutectic so lu t ion -a  saturated ternary solution corresponds to the transition 
saturated binary solutions- saturated ternary solution). The use of Pitzer's 
equations permits calculating al(1 ) and a2(1 ). The task consists in determining the 
composition of the corresponding saturated ternary solution. 

As was already pointed out, a large part of the water-salt systems in which solid 
solutions are formed obey the rule of Zdanovskii, and the numerical values for a 
series of properties of the mixed ternary solutions of electrolytes are additive with 
respect to the properties of the binary solutions being mixed• When this rule is valid, 
the integral of the Mckay-Perrin9 equation becomes equal to zero and the equations 
for the activity coefficients 71 and 72 of the components in the ternary solution can 
be written as [13] 

a l ( l o )  a2 ( lo )  
~ 1  - and 7 2 -  • 10 

m l  + rn2 m l  + 012 

The index 1 o concerns the binary solution which is isopiestic to the ternary solution 
(ml,m2). 

After simple transformations, equations 10 can be written as 

al(1) _ m l and a2(l~)- me 11 
a,(lo) ml + m2 a2(lo) ml + m2 

From the latter equation it is evident that when the systems follow the rule of 
Zdanovskii, the activity ratio is constant with a constant molar fraction in the liquid 
phase. Then, in the corresponding saturated ternary solution the molar fraction Xaq 
of each component should be the same as in an eutectic solution (Xaq): 

e u t  m 2  _ e u t  
ml - ml and m2 12 

e u t  e u t  e u t  - -  e u t  
m 1 + m 2 m 1 + m 2 m 1 + m 2 m 1 -5- m 2 

The composition (m 1, me) can also be determined graphically. It corresponds to the 
point of interaction of the solubility isotherm with the beam connecting the hypothe- 
tic eutectic and water angle. If the model regular solution describes the system under 
consideration sufficiently exactly and the condition of stoichiometric saturation is 
satisfied (Xaq = Xact = X) ,  then the maximum Gmix(s) value can be calculated using the 
equation 

Gmix(s) = 0.5RT In al(1)a2(1) 13 
al(lo)a2(lo) 

where al(1 ) and a2(1) are the activities of components in the saturated ternary 
solution]n which the molar fraction of each component is equal to the molar fraction 
in the hypothetic eutectic. The method presented allows calculating the Gibbs energy 
of mixed crystals from the solubility in saturated binary and ternary solutions alone, 
using the approximation that the corresponding system follows the rule of 
Zdanovskii. 

In the present paper we have calculated Gmix(s) for the systems RbC1-KCI-H20, 
RbCI-RbBr-H20,  and MgC12-MgBr2-H20. The results obtained (Table 4) are 
approximated as simplified equations illustrating the GE(s) vs. xl dependence in the 



Four-Component Carnallite Type Systems 

Table 4. Excess parameters at 298.15 K 

1381 

Mixed 
crystals 

Composition of "hypothetic" 
eutectic in molalities 

G~(s)/J'mol 1 

a b c d e 

(K, Rb)CI 
Rb(CI, Br) 
Mg(C1, Br)2.6H20 

mKcj = 2.21; mRbCl = 6.44 3335 4100 3345 1500 3000 
mRbcl = 5.73; mRbm = 3.94 2690 2800 2915 2000 3100 
mMgcl 2 = 3.40; mMgBr2 = 3.40 - -4315  --4280 -- -- 

"The GE(s) values are calculated on the basis of the proposed method and experimental data of D'Ans 
and Busch [25] concerning the KCI RbC1 system, of Makarov et al. [20] for the RbCI-RbBr system, 
and of Boeke [26] for the MgCI2-MgBr 2 system; b G~(S) are calculated according to equation 2 and 
are presented in Ref. [14] and [33]; CGE(s) from fits to Lippmann diagrams [15]; dgeneralized 
parameters of Sangster and Pelton [21]; eexperimental results of Ratner and Makarov [19] for the 
KC1 RbCI system and of Makarov et al. [20] for the RbC1-RbBr system 

case of a regular mixing model (G2E(s) = 0 in equation 3). Our results are compared 
with the experimental data reported in the literature and with values calculated on 
the basis of different theoretical models. 

Using isopiestic data on the ternary solutions, Pitzer  and K i m  [9] have 
calculated the ternary parameters of interionic interaction for more than 50 systems 
where mixed crystals are formed. The results presented by these authors show that 
the 0Ms and ~'MNX values are very low.and their use (and not the assumption about 
0MS = OMNx = 0) does not lead to better results in all cases when describing the 
properties of the ternary solutions (ln 7 or ~o). In the present study we have calculated 
0My and ~'MNX according to the rule of Zdanovsk i i  and have also obtained very low 
values. This permits the assumption that the systems under consideration follow, to 
a sufficient extent, the rule of Zdanovski i .  In addition, the very low values of 0MN 
and tPMNX also determine the very weak ionic interactions of the type M - N  and 
M - N - X  in ternary solutions of the type M X - N X - H 2 0 .  On this basis it can be 
assumed that for the above systems the active fraction Xac t is equal to the molar 
fraction Xaq in the liquid phase and equations 2 and 13 can be used for determining 
Gm~x(s). This is confirmed by the very good agreement between the results obtained 
by us (GE(s)/J'mol 1 = 3335) and those presented in Ref. [15] (GE(s)/J.mol- ~ = 3345) 
on the RbCI-KC1 system, which are derived from the experimental solubility data 
obtained by D'Ans  and Busch [25]. Similarly to Kgnigsberger  [15], in our 
calculations we have neglected the ternary parameters; the binary parameter values 
are very close. That is why the differences in data obtained for the RbC1-RbBr 
system are, according to our opinion, due mainly to the different experimental data 
used. This is also the reason for the different values obtained for excess parameters 
after applying equations 2 and 13. 
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